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EFFECT OF SPATIAL MODULATION OF THE TEMPERATURE DISTRIBUTION ON 

THE STABILITY OF TWO-DIMENSIONAL STEADY FLOW IN A HORIZONTAL 

LAYER OF A TWO-COMPONENT LIQUID 

V. A. Batishchev, V. V. Kolesov, 
S. K. Slitinskaya, and V. I. Yudovich 

UDC 536.25 

We study the stability of two-dimensional steady flow in a horizontal layer of viscous 
heat-conducting liquid containing an admixture. For constant temperatures of the boundaries 
of the layer the convection equations admit a steady-state solution (mechanical equilibrium) 
which is stable if the temperature gradient is not too large. Under spatial modulation of the 
temperature distribution the liquid cannot be in equilibrium, and a spatially periodic convec- 
tive regime is established in it for arbitrarily small temperature gradients [i, 2]. The pur- 
pose of the present article is to find the critical values of the temperature gradient for 
which this primary regime becomes unstable and a secondary regime develops in the liquid. A 
similar problem was solved in [2] for a homogeneous liquid when both boundaries of the layer 

are free surfaces. 

i. Formulation of the Problem. Suppose a viscous heat-conducting liquid containing an 
admiXture fills an infinite plane horizontal layer of thickness h. The lower boundary of the 
layer is a solid surface whose temperature is modulated by small-amplitude perturbations which 
are periodic along the layer. The free upper surface of the layer is not deformed (taking ac- 
count of the deformability is important only for thin layers of liquid and in weak gravita- 
tional fields [3]), and it is free of tangential stresses. The atmosphere above the layer is 
a stationary gas having a quasistationary temperature distribution. The heat flux Q along the 
vertical in the atmosphere far from the free surface is assumed given (for heating from below 
Q > 0). We assume that the temperature and the normal component of the heat flux are continu- 
ous through the free surface. There is no flow of the admixture through the boundaries of the 
layer. The liquid as a whole cannot be displaced parallel to the bottom. The amount of admix- 

ture in the liquid is specified. 

, v }, the pressure ~ the temperature The problem of determining the velocity v = {v x Vyl 
T of the liquid, the temperature | of the atmosphere, and tee concentration S of the admixture, 
reduced to dimensionless form and written in the Boussinesq approximation, has the form 

av 
aT + (v, V) v = - -  VII + Av + e (GT - -  G,S), 

aT i 
a-F + (v,V) T = > T A T ,  d i v v = 0 ,  A(9----0, 

as ~ div (VS ~SVT),  at + (v, V) S + 

(1.1) 
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OS OT v = O ,  r = s c o s ~ o x ,  ~ + ~ S ~ = O  ( z = 0 ) ,  

Ovx .OVz Ov v Ovz OT m 80  OS + OF 
v~ = ~ + c~z Oz + T~  = T - o = =---o~ ~z = ~ ~S ~ = O 

V @ -~  {0, 0, - - l / m }  (z - +  oo),  

(z = t ) , .  

where x, y, z are Cartesian coordinates with the x axis along the layer and the z axis per- 
pendicular to the boundaries of the layer, t is the time, e = {0, 0, I} is the unit vector 
along the z axis, G = gSh~Q/• ~ and G S = gBshaS/v 2 are the Grashof number and its concentra- 
tion analog, Pr = v/X and Pr d = v/d are the Prandtl number and its diffusion analog, ~ = 
khQ/• a parameter characterizing the thermal diffusion, m = • the ratio of the ther- 
mal conductivitiesof the atmosphere ~o and the liquid • g is the acceleration due to gravity, 

is the average concentration of the admixture under isothermal conditions; ~, X, B, $S, d 
and k are, respectively, the kinematic viscosity, the diffusivity, the coefficient of thermal 
expansion, the concentration compressibility, the diffusion coefficient of the admixture, and 
the thermal diffusion coefficient; s and ~ are the amplitude and frequency of modulation of 
the temperature on the lower boundary of the layer. 

It is required to find the two-dimensional (independent of y) steady-state solution of 
problem (i.i) with a period 2~/~ along the x axis (the primary steady-state regime), and to 
investigate its stability in the class of two-dimensional perturbations with two fundamental 
frequencies ~ and ~ in x, where a is an arbitrary specified wave number. 

2. Primary Steady-State Regime. If there is no modulation of the temperature distribu- 
tion (e = 0), problem (I.i) admits the steady-state solution (mechanical equilibrium): 

v ~ = 0 ,  T O = - - z ,  S O = ~ e x p ( ~ z ) / [ e x p ( ~ ) - -  11, 

�9 ~ ( 2 . 1 )  
@ o = ~ - m , - z  Ho GsS o) dz' + CO1~8t. 

0 

A small-amplitude modulation of the temperature transforms the one-dimensional solution 
(2.1) into a two-dimensional steady-state solution which, in the nonresonance case, we seek 
in the form of series in powers of the small parameter s: 

'Vxo = euoflz) s in  ~ox + e2Uo.~(z) s in2o~x  + . . . ,  

v~o = ewes(z) cos mz + ~wo~(z) cos 2~z  + ...,: 

N O = H a ~- ~pol(Z) cos ~x  + e3[po2(Z) cos 2o~x + Poe(z)] + . . . .  , 

T o = f 0 + Pr  er~ol(Z ) cos mx q- P r  &[%2(z) cos 2rex -}- %o(z)] -F . . . .  

@o : O~ ~- Pr  e0oi(Z) cos ~ x  + Pr  e2002(z) cos 2 ~ x  - -  ...~ 

S o = S o @ ~ PrdeSol(Z ) cos ~ x  - -  ~Prde~[s~2(z) cos 2o~x @ soo(z )] -1- o.. 

( 2 . 2 )  

Substituting (2.2) into (].i), equating coefficients of equal powers of ~ and separat- 
ing variables, we obtain a recurrent chain of linear boundary value problems for determining 
the coefficients in series (2.2). These boundary value problems are too cumbersome to write 
down here. 

3. Stability of the Primary Steady-State Regime. The solution (2.2) of problem (i.i) 
exists for any value of the Rayleigh number R = PrG, but when the Rayleigh number passes 
through the critical value Ro~ the solution (2.2) can become unstable. We seek Re in the form 
of the series 

=~0 + + + ... (3.!) 

To determine the coefficients in series (3.1) we impose infinitesimal two-dimensional 
perturbations on the primary regime (2.2), i.e., we seek a solution of problem (i.I), differ- 
ent from (2.2), in the form 

vx = vxo + V=, vz = Vzo + V~, II = YI o -6 II ' ,  

T = To + Pr T', @ : @o-+" Pr 8 ' ,  S == J@ + ~ PraS'. ( 3 . 2 )  

Since problem (i.I) is invariant under the inversion x + --x, v x § -~rx~ the eigenfunctions 
(normal modes) of the linearized stability problem for regime (2.2) are divided into even and 
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odd classes: Vz' , ~' T' and @' and S' are even functions of x, and v x' is odd; v ', ~' T' , , , , , 

@' and S' z , are odd functions of x, and v ' is even. 
x 

Let us consider the case of even perturbations. Substituting (3.2) into (i.I), lineariz- 
ing the problem obtained in the neighborhood of regime (2.2), and separating variables, we ob- 
tain 

v~ = u 1 (z) sin a x  + e [u n (z) sin (~ + a) x + ui~ (z) sin (~ - -  a) xl + 

+ e ~ [u~ 1 (z) sin (2~ + ~) x + u ~  ~)  sin (2~ - -  a) x + U~o (~ sin ~ + . . . ,  

V~ = W 1 (g) COS ~Z + E I~11 (Z) COS (~ + a )  X + W12 (Z) COS ((1) - -  ~)  xl  + 

+ e ~ [W~l (z) cos (2~ + a)  x + w~2 (z) cos ~2~ - -  a)  x + w2~ (z) cos a x l ' +  . . . ,  

where a is the wave number of the perturbations (a # ~). 

Analogous expansions in cosines hold for the functions H', T', @', and S'. It is char- 
acteristic that the Fourier expansions of the perturbations contain only the harmonics sin 
(k~ + e)x and cos (kw + ~)x (k = 0, i, 2) which arise in the interaction of the harmonics 
sin k~x and cos k~x of regime (2.2) with the fundamental harmonics sin ~x and cos ~x of the 

perturbations. 

Substituting (3.2) into (i.i), linearizing the problem obtained in the neighborhood of 

the two-dimensional steady-state regime (2.2), equating coefficients of equal powers of ~, 
and separating variables, we obtain a recurrent chain of linear boundary value problems. The 
first of these problems serves to determine the leading term R~ ~ in the expansion of the 
critical value Ro of the Rayleigh number in series (3.1) and the corresponding eigenfunctions. 
The subsequent boundary value problems are inhomogeneous. The conditions of their solvability 

enable us to find the remaining coefficients in the expansion (3.1). 

Omitting the cumbersome calculations, we present only the results: 
I 

= o ,  R ?  ) = = - 

0 1 

0 

] i  = [(wi2.--  wii)(DaWoi ~ a~Dwoi) -- (D~wl~ - -  D ~ w n ) D w ~  (3.3) 

[wolD3wil  - -  a ( a  "-k 2 ~ ) w o i D w i i  - -  D~woiDwn] / (  a ~ ~)  "-k [woiD3wi2 - -  

- -  a ( ~  - -  2~)wolDwi2  - -  D2woiDwi~]/ (a  - -  ~)  - -  2a(wi2 + w n ) D w o l '  

]2 = Dwoi[( a - -  ~)~12 - -  (a  ~ ~ )~ l l ] /~  - -  w0i(D%2 ~ DTli) ~ ~Toi X 

[ D w i J ( a  - -  ~ )  - -  D w n ( a  ~ ~)]  - -  D%i(wl~ ~ Wu) - -  2wiD<oo, 

= Dwoi[ (a  - -  m)sl= - - ( a  q- ~)g11] /~  - -  ~o1(D312 + D s n )  q- msoi x 

IDwl~/(a  - -  ~)  - -  D w n / ! a  + ~) l  - -  D~i(wi~ + wi0  - -  2WlDSoo" 

H e r e  D = d / d z ,  and  ~ = B s k x S / ~ d  i s  t h e  t h e r m o c o n c e n t r a t i o n  p a r a m e t e r .  

I n  d e r i v i n g  ( 3 . 3 )  i t  was  a s s u m e d  t h a t  ~ = k h Q / x  z 0 .  T h e r e b y  we a r e  l i m i t e d  t o  t h e  c o n -  
s i d e r a t i o n  of a layer which is not too thick, and to liquids for which the thermal diffusion 
coefficient k is small in comparison with the thermal conductivity ~. There is clearly no 
difficulty in considering the case ~ # 0, but then formulas (3.3) become much more cumbersome. 

For odd perturbations formulas (3.3) retain their form. 

4. Numerical Results. To find the first two nonzero coefficients in the expansion of 
the critical value of the Rayleigh number in series (3.1) it is necessary to solve the spec- 
tral problem for the determination of Ri ~ , wi, ri, si, and three inhomogeneous boundary value 

problems for the determination of the functionswol, ro~, So~, w~i, ~, s~, w~=, r~=, and 
s~=. Each of these problems was reduced to a boundary value problem for a s~stem of eight 
ordinary differential equations of the first order, which were solved on a BESM-6 computer by 

the method of ranging. 

Calculations were performed for Pr = 7, Pr d = 813, m = 0.0436, and ~ > 0, which corre- 
sponds toa layer of sea water (the admixture in the water is salt) whose free surface is in 

contact with the air. 
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Since the value So of the wave number ~ of the perturbation which yields the minimum 
critical value of the Rayleight number is of the greatest physical interest, we performed a 
numerical minimization of Ro(~) with respect to ~. It is easy to see that So is decomposed 
into the series 

where e~o) is the value of the wave number ~ which minimizes the function R~~ and the 
correction ~=) is given by the formula 

L / 

The calculated dependences of the corrections R~ 2) and ~ ~ to the critical values R~ ~ 
and e~o) of the Rayleigh number and the wave number of the perturbations on the frequency 
of the modulation of the temperature distribution are shown in Figs. i and 2 for various values 
of the thermoconcentration parameter ~. The solid curves correspond to ~ = 0~ (~o) = 2.00, 
R~ ~ = 5~2~ the dash@d~curves to ~ = i (~o) = i.~5~ R~ ~ = 256~, and the dash-dot curves to 

= 2 (~o~ = 1.09~ R~ ~ = 150~.. The curves for R~2J(e) and e~2J(e) have discontinuities at 
the points ~ = ~o) and ~ = 2~ ~ since resonances occur in the interaction of th@ (undamen- 
ta~ ~requency with the harmonic temperature oscillations with freaueneies ~ near ~oj and 
2~ ~ Expansion (3.1) no longer holds at these two exceptional points. 

In conclusion, we note that for noncritical values of the wave number of the perturbations 
(~ # ~o)) the number of resonances is increased. If we drop terms of 0(~ 3) in expansions 
(2.2) and (3.3), the total number of resonances is no more than five. 
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